Publication Type Journal Article
Title Hydrogen Generation via Activation of X-H Bonds in Ammonia and Water by an Mo-I Complex
Authors Nuno A. G. Bandeira Luis F. Veiros Carles Bo
Groups IOARC
Journal CHEMISTRYSELECT
Year 2017
Month December
Volume 2
Number 34
Pages 11071-11082
Abstract The mechanism of H-2 production from a Mo(I) complex with terpyridine and phosphine ancillary ligands, [Mo(NH3)((Ph)tbpy)(PPh2Me)(2)](+) was computationally investigated by DFT calculations. Several tentative pathways were tested and the most favourable one corresponds to a bimolecular mechanism that starts with the oxidative addition of the N-H bond in NH3, yielding a 7-coordinate Mo(III) species with a hydride and an amido ligand. In a second step two such intermediates join to form H-2 and the Mo(II) co-product, [Mo(NH2)((Ph)tbpy)(PPh2Me)(2)](+). The first step has the highest barrier and its value (26.5kcal/mol) is in agreement with mild reaction conditions, as experimentally observed (6 hours at 60 degrees C). The entire process occurs with spin change from S=1/2 in the initial complex to S=0 in the products. The same mechanism is also operative using water and methanol as ligands, the corresponding free energy barrier being ca. 7kcal/mol lower than the one calculated for NH3.
DOI http://dx.doi.org/10.1002/slct.201701801
ISBN
Publisher
Book Title
ISSN 2365-6549
EISSN
Conference Name
Bibtex ID ISI:000417743100018
Observations
Back to Publications List