Publication Type Journal Article
Title Energetics of C-F, C-Cl, C-Br, and C-I bonds in 2-haloethanols. Enthalpies of formation of XCH2CH2OH (X = F, Cl, Br, I) compounds and of the 2-hydroxyethyl radical
Authors Carlos E. S. Bernardes M. E. M. Piedade Luisa M. P. F. Amaral Ana I. M. C. L. Ferreira Manuel A. V. Ribeiro da Silva H. P. Diogo Benedito J. Costa Cabral
Groups MET BioMol
Journal JOURNAL OF PHYSICAL CHEMISTRY A
Year 2007
Month March
Volume 111
Number 9
Pages 1713-1720
Abstract The energetics of the C-F, C-Cl, C-Br, and C-I bonds in 2-haloethanols was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-chloro-, 2-bromo-, and 2-iodoethanol, at 298.15 K, were determined as Delta(f)(ClCH2CH2OH, l) = -315.5 +/- 0.7 kJ center dot mol(-1), Delta(f)(BrCH2CH2OH, l) = -275.8 +/- 0.6 kJ center dot mol(-1), Delta(f)(ICH2CH2OH, l) = -207.3 +/- 0.7 kJ center dot mol(-1), by rotating-bomb combustion calorimetry. The corresponding standard molar enthalpies of vaporization, Delta(vap)(ClCH2CH2OH) = 48.32 +/- 0.37 kJ center dot mol(-1), Delta(vap)(BrCH2CH2OH) = 54.08 +/- 0.40 kJ center dot mol(-1), and Delta(vap)(ICH2CH2OH) = 57.03 +/- 0.20 kJ center dot mol(-1) were also obtained by Calvet-drop microcalorimetry. The condensed phase and vaporization enthalpy data lead to Delta(f)(ClCH2CH2OH, g) = -267.2 +/- 0.8 kJ center dot mol(-1), Delta(f)(BrCH2CH2OH, g) = -221.7 +/- 0.7 kJ center dot mol(-1), and Delta(f)(ICH2CH2OH, g) = -150.3 +/- 0.7 kJ center dot mol(-1). These values, together with the enthalpy of selected isodesmic and isogyric gas-phase reactions predicted by density functional theory (B3LYP/cc-pVTZ) and CBS-QB3 calculations were used to derive the enthalpies of formation of gaseous 2-fluoroethanol, Delta(f)(FCH2CH2OH, g) = -423.6 +/- 5.0 kJ center dot mol(-1), and of the 2-hydroxyethyl radical, Delta(f)(CH2CH2OH, g) = -28.7 +/- 8.0 kJ center dot mol(-1). The obtained thermochemical data led to the following carbon-halogen bond dissociation enthalpies: DHo(X-CH2CH2OH) = 474.4 +/- 9.4 kJ center dot mol(-1) (X = F), 359.9 +/- 8.0 kJ center dot mol(-1) (X = Cl), 305.0 +/- 8.0 kJ center dot mol(-1) (X = Br), 228.7 +/- 8.1 kJ center dot mol(-1) (X = I). These values were compared with the corresponding C-X bond dissociation enthalpies in XCH2COOH, XCH3, XC2H5, XCHCH2, and XC6H5. In view of this comparison the computational methods mentioned above were also used to obtain Delta(f)(FCH2COOH, g) = -594.0 +/- 5.0 kJ center dot mol(-1) from which DHo(F-CH2COOH) = 435.4 +/- 5.4 kJ center dot mol(-1). The order DHo(C-F) > DHo(C-Cl) > DHo(C-Br) > DHo(C-I) is observed for the haloalcohols and all other RX compounds. It is finally concluded that the major qualitative trends exhibited by the C-X bond dissociation enthalpies for the series of compounds studied in this work can be predicted by Pauling s electrostatic-covalent model.
DOI http://dx.doi.org/10.1021/jp0675678
ISBN
Publisher AMER CHEMICAL SOC
Book Title
ISSN 1089-5639
EISSN
Conference Name
Bibtex ID ISI:000244530300018
Observations
Back to Publications List