Publication Type Journal Article
Title Probing into the properties of B4C reinforced nickel phosphorus-based nanocomposite coating
Authors Osama Fayyaz Moinuddin M. Yusuf Sara Bagherifard Maria F. Montemor R. A. Shakoor
Groups CSSE
Journal JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR\&T
Year 2022
Month
Notice: Undefined index: in /afs/ist.utl.pt/groups/cqe/web/tmp/templates_c/77f86a5f762542dadf50c7f7fefa96acd45c2726_0.file.paper.tpl.html.php on line 163
Volume 20
Number
Pages 2323-2334
Abstract Nickel-based coatings are well known for their good corrosion resistance performance. However, these materials suffer from inferior mechanical properties that limit their wider application. This work investigates the synthesis, and performs an exhaustive characterization, of Ni-P-B4C nanocomposite coatings developed through conventional electrode -position using a modified Watts bath. The study examines the effect of an increase in the concentration of boron carbide nanoparticles (BCNPs) on the structural, morphological, topographical, mechanical and electrochemical properties of the nanocomposite coating. Vickers microhardness tester and nanoindentation technique were utilized to elucidate the role of BCNPs in modifying the mechanical response of nanocomposite coatings. Furthermore, corrosion resistance of the nanocomposite coatings was investigated through d.c potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Comparison of the properties of the developed coatings revealed the remarkable improvement in the properties of Ni-P-B4C nanocomposite coatings when compared to the bare mild steel substrate and the Ni-P coatings. The enhanced corrosion resistance and superior mechanical properties of Ni-P-B4C nanocomposite coatings make them attractive for many industries. Based upon the experimental findings, a possible mechanism for the synthesis and improved corrosion resistance of Ni-P-B4C nanocomposite coatings was also proposed. (c) 2022 The Author(s). Published by Elsevier B.V.
DOI http://dx.doi.org/10.1016/j.jmrt.2022.07.184
ISBN
Publisher ELSEVIER
Book Title
ISSN 2238-7854
EISSN 2214-0697
Conference Name
Bibtex ID WOS:000863126400001
Observations
Back to Publications List