Publication Type Journal Article
Title The Impact of Alumina Nanofluids on Pool Boiling Performance on Biphilic Surfaces for Cooling Applications
Authors Ricardo Santos Ana Sofia Moita A.P.C. Ribeiro A. L. N. Moreira
Groups CCC
Journal ENERGIES
Year 2022
Month
Notice: Undefined index: in /afs/ist.utl.pt/groups/cqe/web/tmp/templates_c/77f86a5f762542dadf50c7f7fefa96acd45c2726_0.file.paper.tpl.html.php on line 163
Volume 15
Number 1
Pages
Abstract This work aims to study the impact of nanofluids with alumina particles on pool boiling performance. Unlike most studies, which use a trial-and-error approach to improve boiling performance parameters, this study details the possible effects of nanoparticles on the effective mechanisms of boiling and heat transfer. For this purpose, biphilic surfaces (hydrophilic surfaces with superhydrophobic spots) were used, which allow the individual analysis of bubbles. Surfaces with different configurations of superhydrophobic regions were used. The thermophysical properties of fluids only vary slightly with increasing nanoparticle concentration. The evolution of the dissipated heat flux and temperature profiles for a nucleation time frame is independent of the fluid and imposed heat flux. It can be concluded that the optimal concentration of nanoparticles is 3 wt\%. Using this nanoparticle concentration leads to lower surface temperature values than those obtained with water, the reference fluid. This is due to the changes in the balance of forces in the triple line, induced by increased wettability as a consequence of the deposited particles. Wherefore, smaller and more frequent bubbles are formed, resulting in higher heat transfer coefficients. This effect, although relevant, is still of minor importance when compared to that of the use of biphilic surfaces.
DOI http://dx.doi.org/10.3390/en15010372
ISBN
Publisher
Book Title
ISSN
EISSN 1996-1073
Conference Name
Bibtex ID WOS:000759198600001
Observations
Back to Publications List