Publication Type Journal Article
Title H-Bonded and metal(II)-organic architectures assembled from an unexplored aromatic tricarboxylic acid: structural variety and functional properties
Authors Jin-Zhong Gu Shi-Mao Wan V Kirillova A Kirillov
Groups BioMol
Journal DALTON TRANSACTIONS
Year 2020
Month June
Volume 49
Number 21
Pages 7197-7209
Abstract This study reports the application of an aromatic tricarboxylic acid, 2,5-di(4-carboxylphenyl)nicotinic acid (H(3)dcna) as a versatile and unexplored organic building block for assembling a new series of metal(II) (M = Co, Ni, Zn, Fe, and Mn) complexes and coordination polymers, namely [M(Hdcna)( phen)(2)(H2O)]center dot H2O (M = Co (1), Ni (2)), [Zn(mu-Hdcna)(phen)](n) (3), [Co(mu-Hdcna)(bipy)(H2O)(2)](n)center dot nH(2)O (4), [Zn-2(mu-Hdcna)(2)(bipy)(2)(H2O)(4)]center dot 6H(2)O (5), [Zn(mu(3)-Hdcna)(H(2)biim)](n) (6), [Ni-2(Hdcna)(2)(mu-bpb)(bpb)(2)(H2O)(4)] (7), [Fe(mu(4)-Hdcna)(mu H2O)](n)center dot nH(2)O (8), and [Mn-3(mu(5)-dcna)(2)(bipy)(2)(H2O)(2)](n)center dot 2nH(2)O (9). Such a diversity of products was hydrothermally prepared from the corresponding metal(II) salts, H(3)dcna as a principal multifunctional ligand, and N-donor mediators of crystallization (1,10-phenanthroline, phen; 2,2 -bipyridine, bipy; 2,2 -biimidazole, H(2)biim; or 1,4-bis(pyrid-4-yl)benzene, bpb). The obtained products 1-9 were fully characterized by standard methods (elemental analysis, FTIR, TGA, PXRD) and the structures were established by single-crystal X-ray diffraction. These vary from the discrete monomers (1, 2) and dimers (5, 7) to the 1D (3, 4, 6) and 2D (8, 9) coordination polymers (CPs). Structural and topological characteristics of hydrogen-bonded or metal-organic architectures in 1-9 were highlighted, revealing that their structural multiplicity depends on the type of metal(II) source and crystallization mediator. Thermal stability as well as luminescent, magnetic, or catalytic properties were explored for selected compounds. In particular, the zinc(II) derivatives 3, 5, and 6 were applied as efficient heterogeneous catalysts for the cyanosilylation of aldehydes with trimethylsilyl cyanide at room temperature. The catalytic reactions were optimized by tuning the different reaction parameters (solvent composition, time, catalyst loading) and the substrate scope was also explored. Compound 5 revealed superior catalytic activity leading to up to 75\% product yields, while maintaining its original performance upon recycling for at least four reaction cycles. Finally, the obtained herein products represent the unique examples of coordination compounds derived from H(3)dcna, thus opening up the use of this multifunctional tricarboxylic acid for generating complexes and coordination polymers with interesting structures and functional properties.
DOI http://dx.doi.org/10.1039/d0dt01261k
ISBN
Publisher
Book Title
ISSN 1477-9226
EISSN 1477-9234
Conference Name
Bibtex ID ISI:000538134300031
Observations
Back to Publications List